Closed categories generated by commutative monads

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Categories Generated by Commutative Monads

The notion of commutative monad was denned by the author in [4]. The content of the present paper may briefly be stated: The category of algebras for a commutative monad can in a canonical way be made into a closed category, the two adjoint functors connecting the category of algebras with the base category are in a canonical way closed functors, and the frontand end-adjunctions are closed tran...

متن کامل

Monads on Symmetric Monoidal Closed Categories By

Introduction. This note is concerned with "categories with internal horn and | and we shall use the terminology from the paper [2] by EIL~.NBERG and Kv.Imy. The result proved may be stated briefly as follows : a Y/--monad ("strong monad") on a symmetric monoidal closed category ~ carries two canonical structures as closed functor. I f these agree (in which case we call the monad commutative), t...

متن کامل

Pseudo-commutative Monads

We introduce the notion of pseudo-commutative monad together with that of pseudoclosed 2-category, the leading example being given by the 2-monad on Cat whose 2-category of algebras is the 2-category of small symmetric monoidal categories. We prove that for any pseudo-commutative 2-monad on Cat, its 2-category of algebras is pseudo-closed. We also introduce supplementary definitions and results...

متن کامل

Monads in double categories

Introduction The development of the formal theory of monads, begun in [23] and continued in [15], shows that much of the theory of monads [1] can be generalized from the setting of the 2-category Cat of small categories, functors and natural transformations to that of a general 2-category. The generalization, which involves defining the 2-category Mnd(K) of monads, monad maps and monad 2-cells ...

متن کامل

Monads on Dagger Categories

The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1971

ISSN: 0004-9735

DOI: 10.1017/s1446788700010272